Découverte du progiciel THERMOPTIM

1.1 fonctionnalités du logiciel (élaboré par Renaud Gicquel Ecole des Mines de Paris)

Il permet de construire au moyen d'un <u>éditeur de schémas</u>, différents dispositifs :machines thermiques cycliques, climatiseurs, machines frigorifiques, etc, utilisant soit des fluides parfaits (air, azote, etc..) soit des fluides réels, puis à l'aide du <u>simulateur</u> de calculer leur fonctionnement. Un optimiseur (non disponible dans cette version) permet le meilleur choix des paramètres

Il permet de prendre en compte les changements d'état, et le tracé des différents <u>diagrammes</u> <u>d'équilibre</u> liquide-vapeur.

Toutes les fonctionnalités ne sont pas disponibles dans la version d'évaluation; en particulier la sauvegarde n'est pas possible. Il faudra donc faire bien attention à ne pas effectuer de fausse manoeuvre !

1.2 étude d'un cycle thermodynamique moteur

le fluide utilisé sera de l'air, considéré comme un gaz parfait. On prendra comme exemple un cycle extrait d'un sujet de concours.

On se propose d'étudier un dispositif de turbine à gaz à combustion. Le principe du dispositif est donné sur la figure :

L'air, pris à la pression $P_1 = 1$ bar et à la température $T_1 = 293$ K, rentre dans le compresseur (K) où il reçoit un travail W_k en subissant une compression adiabatique réversible jusqu'à la pression $P_2 = 4$ bars et la température T_2 .

Il rentre ensuite dans la chambre de combustion (C), dans laquelle il reçoit de façon isobare une quantité de chaleur Q_1 .

Il ressort de la chambre de combustion à la température $T_3 = 923$ K.

Il est ensuite envoyé dans une turbine où il subit une détente adiabatique réversible qui le ramène à la pression P_1 et à la température T_4 en fournissant à la turbine le travail W_t .

En sortant de la turbine, il est ramené à la température T_1 en échangeant de façon isobare une quantité de chaleur Q_2 avec l'extérieur dans un échangeur et le cycle recommence.

1. Tracer l'allure des évolutions du gaz au cours de son cycle dans le diagramme de Clapeyron (P,V) : V en abscisses et P en ordonnées.

2. Tracer les évolutions du gaz au cours du cycle dans le diagramme entropique (T, S) : S en abscisses et T en ordonnées. On montrera au préalable qu'une isobare est représentée dans le diagramme (T,S) par une exponentielle croissante.

3. Calcul du rendement.

a. Le rendement du cycle est défini par $\eta = -\frac{W_t + W_k}{Q_1}$. Justifier cette définition.

b. Exprimer ce rendement en fonction de Q1 et Q2 uniquement.

c. Exprimer ensuite ce rendement en fonction de T₁, T₂, T₃ et T₄ uniquement, montrer que T₁/T₂ = T₄/T₃ et montrer que le rendement s'écrit enfin 1 - T₁/T₂. Application numérique.

2. utilisation du simulateur

dans cette partie, on va saisir le schéma de l'installation, puis renseigner les différents points du cycle, afin de permettre au simulateur d'effectuer les calculs. On examinera ensuite les tracés des points sur différents diagrammes.

2.1 éditeur de schémas.

Sélectionner les différents composants avec la souris, les placer vers le coin supérieur gauche de l'écran (important pour l'impression)

rentrer les différents renseignements demandés, (nom, fluide = air, numéro du point de sortie) la chambre de combustion sera ici remplacée par un échangeur relié à une source de chaleur, de même pour l'échangeur froid.

"retourner" l'échangeur froid (menu Edition->Miroir Vertical) et relier la sortie de chaque élément à l'entrée de l'autre, au moyen de la souris. On obtient un schéma analogue à celui ci-dessus.

Lorsque le schéma est terminé, aller dans "spécial", "interface schéma/simulateur", "mettre à jour la table des éléments", puis "mettre à jour le simulateur à partir du schéma"; les données sont alors envoyées au simulateur, qui présente la fenêtre suivante

THERMOPTI	M Java. Copyrigh	nt R. Gicquel 19	99-2002			
Fichiers de proje	et 🛛 Fichiers de	résultats Spé	écial Aide			
Nom du projet	: projet			Schéma associé :		
4 POINTS						
nom du point	corps	P (bar)	T (°C)	1		
1	air	1	26,85	-		
2	air	1	26,85			
3	air	1	26,85		,	
4	air	1	26,85			
					Bilan	
4 TRANSFO	s			officacitó		
nom transfo	noint amont	noint aval	type transfo	émodoite		
ech froid	4	1	échange	energie uule		
ech chaud	2	3	échange	énergie payante		
compresseur	1	2	compression			
turhine	3	4	détente	Recalculer	🗹 débit auto	
				typos invalidós	1	
				gipes invalues	-	
NOEUDS				types calculables	2	
nom	ty	/pe \	eine principale	ECHANGEUR	S DE CHALEUR	
				nom	type fluide chaud fluide fro	hi
					type naide cinada naide no	

2.2 utilisation du simulateur	😤 Ecran de cal	cul d'un j	point				
caractéristiques des "points"	projet	projet			🗌 observée	<	>
sélectionner le point 1 (double-clic) la fenêtre de	point	1				liens	
transformation s'ouvre:	-	sir.			Dupliquer	S	auver
	corba [e	411	amor		Supprimer	Fe	ermer
indiquer la pression (1 bar),	Système ouver	t (T,P,h)	Système fermé (T	,v,u)	Mélanges humides]	
la température (20°C)	P (bar)]		l.	P et T cor	nnus
			h (kJ/kg)	-4,88	6052376] P et h cor	nnus
	\downarrow		s (kJ/kg/K)	0,14	5248277] P et s cor	nnus
cliquer sur "calculer" pour faire apparaître les				ex	ergie (kJ/kg) -46	,7138	
caractéristiques du fluide; ces résultats sont	T (°C)	20	-				
provisoires, car tous les points ne sont pas encore définis	т (К) 29)3,15					
	u (kJ/kg)	-3,46	305088		[
cliquer sur "sauver" pour fermer la fenêtre	s (kJ/kg/K)	0,145	248277		Cal	culer	
	V (m3/kg)	0,841	656542	1	21		
	Cp (J/kg/K)	1 002	,06				
procéder de la même façon pour les points	Cv (J/kg/K)	714,9	6				
suivants :	gamma	1,401	57	2		-	
point 2 : $P = 4$ bars point 3 : $P = 4$ bars, $t = 6$	50°C	point	4 : P = 1 b	bar			

caractéristiques des "transformations"

sélectionner le compresseur (double-clic) la fenêtre de transformation s'ouvre.

dans cette fenêtre, observer les différentes caractéristiques de la transformation :	📸 Transfo Compression				<u>_</u> _X
transformation isentropique, système "ouvert"	transfo compresseur type	compression		< >	Sauver
débit massique 1 kg/s par défaut	type énergie	🗌 débit imposé	liens	Supprimer	Fermer
	point amont	débit 1		système fermé système ouvert	🔲 observée
renseigner le type d'énergie (clic-clic)	1 afficher	т AH 143,11		Calcule	r
utile, payante ou autre, suivant la nature de la	T (°C) 20	Q 0			
transformation.	P (bar) 1		v isontr	onique 🗌 no	htropique
	h (kJ/kg) -4,86			ression non adiabatique	nya opiqae
cliquer sur " calculer ", le point aval est	titre 1		C comp	ression non autabauque	
calculé	point aval	22	r isentrop	t nob trominuo 1 2079	7/
	2 afficher		exposition	r hollyn ohidne	<u>.</u>
puis "sauver" et "former"	T (°C) 161,81		rapport de	pression (>= 1)	✓ calculé
puis sauvei et leimei .	P (bar) 4	J	4		🛄 imposé
	h (kJ/kg) 138,26		Imposer	le rendement et calcule	r la transfo 🗹
	titre 1		Calculer le re	endement, le point aval é	itant connu 🗌

Procéder de même avec les autres transformations. Revenir au tableau récapitulatif, vérifier l'affichage des paramètres cliquer enfin sur "**calculer**" pour obtenir la valeur définitive des paramètres.

affichage des valeurs sur le schéma :

revenir à l'éditeur de schéma, cliquer sur menu"spécial", puis "afficher les valeurs", imprimer.

ne pas fermer de fenêtre pour l'instant, sauvegarde impossible ! on peut par contre les réduire.

2.3 exploitation des résultats

(attention : t en \mathfrak{C} , et T en K)

on va chercher à voir comment évolue le rendement du cycle en modifiant un paramètre; par exemple, ici, la température en sortie de l'échangeur chaud. <u>sans fermer Thermoptim</u>, ouvrir un tableau sous régressi :

t3 (°C)	H ₁	H ₂	H ₃	H_4	W ₁₂	Q ₂₃	W ₃₄	Q ₄₁	η
500									
550									
600									
650									
700									

remplir les quatre premières colonnes du tableau, en relevant les valeurs de l'enthalpie affichées dans l'éditeur de schéma pour t3 = 650°C.

revenir au simulateur, modifier t3, recalculer, afficher les nouveaux résultats, et compléter le tableau.

calculer les travaux et chaleurs échangés au cours du cycle

<u>rappel</u>: pour un fluide en écoulement permanent $d(h + e_c) = \delta w' + \delta q$ (grandeurs massiques) donc : $\Delta H = Q_P$ pour un échangeur et $\Delta H = W'$ pour le compresseur ou la turbine.

en déduire la valeur du rendement η pour chaque température, comparer avec les valeurs fournies par le simulateur

Tracer la courbe $\eta = f(t)$, et conclure.

3. editeur de diagrammes

Cette fonction du logiciel, permet de visualiser, dans plusieurs systèmes de coordonnées, les diagrammes d'état de plusieurs gaz, ou systèmes liquide-gaz.

Dans la fenêtre du simulateur, ouvrir "spécial", "diagrammes interactifs", "choisir le type de diagramme", puis "gaz idéaux".

Dans la fenêtre "diagrammes interactifs", cliquer sur "mettre à jour la table des points", puis sur "mettre à jour le diagramme à partir du simulateur". Les points du cycle sont alors affichés sur le diagramme de l'air.

essayer les différentes options de coordonnées ou d'affichage. remarque : l'option "points reliés", relie les points par une droite, et non par la transformation réellement subie par le gaz.